

Supply Chain Solution: inventory optimization

# Inventory Optimization Case Study: RawMat Industries

### **Executive Summary**

This concept study demonstrates our inventory optimization approach for a hypothetical mid-sized manufacturing company producing multiple distinct product lines. The scenario involves a manufacturer facing challenges with six key raw materials subject to price fluctuations, budget constraints, warehouse capacity limitations, and specific inventory requirements.

Through our proposed solution, a company in this situation could potentially achieve [1]:

- 15-20% reduction in raw material acquisition costs
- ★ 20-25% decrease in inventory holding costs
- 10-15% improvement in production efficiency
- ★ 20-25% warehouse space optimization
- ✗ Maintenance of 99%+ service levels



# Common Challenges in Manufacturing Inventory

- Cost management: Balancing acquisition vs. Holding costs
- Price Volatility: Timing purchases to avoid market fluctuations
- Budget Constraints: Adhering to fixed procurement cycles
- ✗ Storage Limitations: Optimizing warehouse space
- Production Continuity: Avoiding stockouts and overstocking

#### **Typical Constraints**

- Budget: Fixed annual + quarterly allocations
- ★ Warehouse Capacity: Limited space
- Minimum Inventory: Safety stock requirements
- Price Volatility: Market and seasonal shifts
- Product Demand: Irregular SKUlevel demand

# CLEARMIND-ANALYTICS Clarity And Impact

# Supply Chain Solution: inventory optimization

## **Solution Approach**

Our solution uses advanced mathematical optimization to help manufacturers determine the optimal raw material acquisition strategy, reduce inventory costs, balance storage constraints, and maintain production continuity — all within budget.



#### 1- Data integration and preparation

- ✗ Collection and validation of historical price data
- Analysis of product-material requirements matrix
- Incorporation of demand forecasts and production schedules
- Assessment of storage constraints and holding costs
- 2- Mathematical Model
  - Goal: Minimize total cost
    (acquisition + holding salvage)

- Decisions: Monthly purchase quantities per materials
- Constraints: Budget, space, and stock level constraints

#### **3- Optimization Process**

- $\star$  Monthly rolling horizon
- オ Demand scenario testing
- ★ Sensitivity analysis for price changes

#### 4- Implementation and execution

- Rolling monthly horizon with quarterly review
- ★ Scenario analysis for demand variation
- ★ Sensitivity testing for price volatility

## **Strategic Benefits Grid**

| Component                 | What We Deliver                                           |
|---------------------------|-----------------------------------------------------------|
| Data Integration          | Accurate inputs for optimized decisions                   |
| Modeling & Optimization   | Smart algorithms that reduce cost and risk                |
| Scenario Planning         | Flexible, resilient planning<br>in uncertain environments |
| Execution &<br>Monitoring | Fast deployment,<br>continuous improvement,<br>measurable |



# Supply Chain Solution: inventory optimization

# Sample Optimization Output (see demo)









Combined View: Raw Material 4

| Month | Price<br>Forecast | Optimal Purchase<br>Quantity | Ending Inventory | Budget Utilized |
|-------|-------------------|------------------------------|------------------|-----------------|
| Jan   | \$4.25/unit       | 12,500 units                 | 14,200 units     | \$53,125        |
| Feb   | \$4.40/unit       | 8,000 units                  | 13,700 units     | \$35,200        |
| Mar   | \$4.15/unit       | 15,000 units                 | 17,200 units     | \$62,250        |
| Apr   | \$3.90/unit       | 18,500 units                 | 20,100 units     | \$72,150        |
| May   | \$3.85/unit       | 19,000 units                 | 21,500 units     | \$73,150        |
| Jun   | \$4.10/unit       | 10,000 units                 | 16,200 units     | \$41,000        |
| Jul   | \$4.30/unit       | 7,500 units                  | 12,100 units     | \$32,250        |
| Aug   | \$4.45/unit       | 6,000 units                  | 10,500 units     | \$26,700        |
| Sep   | \$4.50/unit       | 5,500 units                  | 9,200 units      | \$24,750        |
| Oct   | \$4.35/unit       | 11,000 units                 | 11,800 units     | \$47,850        |
| Nov   | \$4.20/unit       | 14,000 units                 | 14,500 units     | \$58,800        |
| Dec   | \$4.30/unit       | 9,000 units                  | 12,000 units     | \$38,700        |

This table on the left shows a simplified example of what optimization results might look like for one raw material across a 12-month planning horizon